Python3 pickle对象串行化代码实例解析


Posted in Python onMarch 23, 2020

1.pickle对象串行化

pickle模块实现了一个算法可以将任意的Python对象转换为一系列字节。这个过程也被称为串行化对象。可以传输或存储表示对象的字节流,然后再重新构造来创建有相同性质的新对象。

1.1 编码和解码字符串中的数据

第一个例子使用dumps()将一个数据结构编码为一个字符串,然后把这个字符串打印到控制台。它使用了一个完全由内置类型构成的数据结构。任何类的实例都可以pickled,如后面的例子所示。

import pickle
import pprint
data = [{'a': 'A', 'b': 2, 'c': 3.0}]
print('DATA:', end=' ')
pprint.pprint(data)
data_string = pickle.dumps(data)
print('PICKLE: {!r}'.format(data_string))

默认的,pickle将以一种二进制格式写入,在Python 3程序之间共享时这种格式兼容性最好。

Python3 pickle对象串行化代码实例解析

数据串行化后,可以写到一个文件、套接字、管道或者其他位置。之后可以读取这个文件,将数据解除pickled,以便用同样的值构造一个新对象。

import pickle
import pprint
data1 = [{'a': 'A', 'b': 2, 'c': 3.0}]
print('BEFORE: ', end=' ')
pprint.pprint(data1)
data1_string = pickle.dumps(data1)
data2 = pickle.loads(data1_string)
print('AFTER : ', end=' ')
pprint.pprint(data2)
print('SAME? :', (data1 is data2))
print('EQUAL?:', (data1 == data2))

新构造的对象等于原来的对象,但并不是同一个对象。

Python3 pickle对象串行化代码实例解析

1.2 处理流

除了dumps()和loads(),pickle还提供了一些便利函数来处理类似文件的流。可以向一个流写多个对象,然后从流读取这些对象,而无须事先知道要写多少个对象或者这些对象多大。

import io
import pickle
class SimpleObject:
  def __init__(self, name):
    self.name = name
    self.name_backwards = name[::-1]
    return
data = []
data.append(SimpleObject('pickle'))
data.append(SimpleObject('preserve'))
data.append(SimpleObject('last'))
# Simulate a file.
out_s = io.BytesIO()
# Write to the stream
for o in data:
  print('WRITING : {} ({})'.format(o.name, o.name_backwards))
  pickle.dump(o, out_s)
  out_s.flush()
# Set up a read-able stream
in_s = io.BytesIO(out_s.getvalue())
# Read the data
while True:
  try:
    o = pickle.load(in_s)
  except EOFError:
    break
  else:
    print('READ  : {} ({})'.format(
      o.name, o.name_backwards))

这个例子使用两个BytesIO缓冲区来模拟流。第一个缓冲区接收pickled的对象,它的值被填入第二个缓冲区,load()读取这个缓冲区。简单的数据库格式也可以使用pickle来存储对象。shelve模块就是这样一个实现。

Python3 pickle对象串行化代码实例解析

除了存储数据,pickle对于进程间通信也很方便。例如,os.fork()和os.pipe()可以用来建立工作进程,从一个管道读取作业指令,并把结果写至另一个管道。管理工作线程池以及发送作业和接收响应的核心代码可以重用,因为作业和响应对象不必基于一个特定的类。使用管道或套接字时,在转储各个对象之后不要忘记刷新输出,以便将数据通过连接推送到另一端。参见multiprocessing模块来了解一个可重用的工作线程池管理器。

1.3 重构对象的问题

处理定制类时,pickled的类必须出现在读取pickle的进程所在的命名空间里。只会pickled这个实例的数据,而不是类定义。类名用于查找构造函数,以便在解除pickled时参见新对象。下面这个例子将一个类的实例写至一个文件。

import pickleclass SimpleObject:
  def __init__(self, name):
    self.name = name
    l = list(name)
    l.reverse()
    self.name_backwards = ''.join(l)
if __name__ == '__main__':
  data = []
  data.append(SimpleObject('pickle'))
  data.append(SimpleObject('preserve'))
  data.append(SimpleObject('last'))
  with open('Test.py', 'wb') as out_s:
    for o in data:
      print('WRITING: {} ({})'.format(
        o.name, o.name_backwards))
      pickle.dump(o, out_s)

运行这个脚本时,会根据作为命令行参数给定的名字来创建一个文件。

Python3 pickle对象串行化代码实例解析

通过简单的尝试加载而得到的pickled对象将会失败。

import pickle
with open('Test.py', 'rb') as in_s:
  while True:
    try:
      o = pickle.load(in_s)
    except EOFError:
      break
    else:
      print('READ: {} ({})'.format(
        o.name, o.name_backwards))

这个版本失败的原因在于并没有SimpleObject类。

Python3 pickle对象串行化代码实例解析

修正后的版本从原脚本导入了SimpleObject,这一次运行会成功。在导入列表的最后增加了import语句后,现在脚本就能找到这个类并构造对象了。

from demo import SimpleObject

现在允许修改后的脚本会生成期望的结果。

Python3 pickle对象串行化代码实例解析

1.4Unpicklable的对象

并不是所有对象都是可pickled的。套接字、文件句柄、数据库连接以及其他运行时状态依赖于操作系统或其他进程的对象,其可能无法用一种有意义的方式保存。如果对象包含不可pickled的属性,则可以定义__getstate__()和__setstate__()来返回所pickled实例的状态的一个子集。

__getstate__()方法必须返回一个对象,其中包含所pickled对象的内部状态。表示状态的一种便利方式是使用字典,不过值可以是任意的可pickled对象。保存状态,然后再从pickle加载对象时将所保存的状态传入__setstate__()。

import pickle
class State:
  def __init__(self, name):
    self.name = name
  def __repr__(self):
    return 'State({!r})'.format(self.__dict__)
class MyClass:
  def __init__(self, name):
    print('MyClass.__init__({})'.format(name))
    self._set_name(name)
  def _set_name(self, name):
    self.name = name
    self.computed = name[::-1]
  def __repr__(self):
    return 'MyClass({!r}) (computed={!r})'.format(
      self.name, self.computed)
  def __getstate__(self):
    state = State(self.name)
    print('__getstate__ -> {!r}'.format(state))
    return state
  def __setstate__(self, state):
    print('__setstate__({!r})'.format(state))
    self._set_name(state.name)
inst = MyClass('name here')
print('Before:', inst)
dumped = pickle.dumps(inst)
reloaded = pickle.loads(dumped)
print('After:', reloaded)

这个例子使用了一个单独的State对象来保存MyClass的内部状态。从pickle加载MyClass的一个实例时,会向__setstate__()传入一个State实例,用来初始化这个对象。

Python3 pickle对象串行化代码实例解析

1.5 循环引用

pickle协议会自动处理对象之间的循环引用,所以复杂数据结构不需要任何特殊的处理。

import pickle
class Node:
  """A simple digraph
  """
  def __init__(self, name):
    self.name = name
    self.connections = []
  def add_edge(self, node):
    "Create an edge between this node and the other."
    self.connections.append(node)
  def __iter__(self):
    return iter(self.connections)
def preorder_traversal(root, seen=None, parent=None):
  """Generator function to yield the edges in a graph.
  """
  if seen is None:
    seen = set()
  yield (parent, root)
  if root in seen:
    return
  seen.add(root)
  for node in root:
    recurse = preorder_traversal(node, seen, root)
    for parent, subnode in recurse:
      yield (parent, subnode)
def show_edges(root):
  "Print all the edges in the graph."
  for parent, child in preorder_traversal(root):
    if not parent:
      continue
    print('{:>5} -> {:>2} ({})'.format(
      parent.name, child.name, id(child)))
# Set up the nodes.
root = Node('root')
a = Node('a')
b = Node('b')
c = Node('c')
# Add edges between them.
root.add_edge(a)
root.add_edge(b)
a.add_edge(b)
b.add_edge(a)
b.add_edge(c)
a.add_edge(a)
print('ORIGINAL GRAPH:')
show_edges(root)
# Pickle and unpickle the graph to create
# a new set of nodes.
dumped = pickle.dumps(root)
reloaded = pickle.loads(dumped)
print('\nRELOADED GRAPH:')
show_edges(reloaded)

重新加载的节点并不是同一个对象,但保持了节点之间的关系,而且如果对象有多个引用,那么只会重新加载这个对象的一个副本。要验证这两点,可以在通过pickle传递节点之前和之后检查节点的id()值。

Python3 pickle对象串行化代码实例解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现配置文件备份的方法
Jul 30 Python
【Python】Python的urllib模块、urllib2模块批量进行网页下载文件
Nov 19 Python
Python执行时间的计算方法小结
Mar 17 Python
python正则表达式的使用
Jun 12 Python
Python通过属性手段实现只允许调用一次的示例讲解
Apr 21 Python
python随机在一张图像上截取任意大小图片的方法
Jan 24 Python
Python面向对象程序设计类的封装与继承用法示例
Apr 12 Python
python实现批量nii文件转换为png图像
Jul 18 Python
python 实现二维列表转置
Dec 02 Python
Python+OpenCV 实现图片无损旋转90°且无黑边
Dec 12 Python
tensorflow实现在函数中用tf.Print输出中间值
Jan 21 Python
python中time包实例详解
Feb 02 Python
Python面向对象程序设计之类和对象、实例变量、类变量用法分析
Mar 23 #Python
Python3 shelve对象持久存储原理详解
Mar 23 #Python
python新式类和经典类的区别实例分析
Mar 23 #Python
Python count函数使用方法实例解析
Mar 23 #Python
使用python实现飞机大战游戏
Mar 23 #Python
如何在Django中使用聚合的实现示例
Mar 23 #Python
python3注册全局热键的实现
Mar 22 #Python
You might like
PHP5中使用PDO连接数据库的方法
2010/08/01 PHP
PHP flock 文件锁详细介绍
2012/12/29 PHP
php 模拟get_headers函数的代码示例
2013/04/27 PHP
基于empty函数的判断详解
2013/06/17 PHP
对PHP PDO的一些认识小结
2015/01/23 PHP
CI(CodeIgniter)框架实现图片上传的方法
2017/03/24 PHP
PHP读取CSV大文件导入数据库的实例
2017/07/24 PHP
php实现有序数组旋转后寻找最小值方法
2018/09/27 PHP
PHP7 标准库修改
2021/03/09 PHP
一段效率很高的for循环语句使用方法
2007/08/13 Javascript
使用jQuery轻松实现Ajax的实例代码
2010/08/16 Javascript
用Mootools获得操作索引的两种方法分享
2011/12/12 Javascript
5个最佳的Javascript日期处理类库分享
2012/04/15 Javascript
JQuery动画和停止动画实例代码
2013/03/01 Javascript
js检验密码强度(低中高)附图
2014/06/05 Javascript
JavaScript给按钮绑定点击事件(onclick)的方法
2015/04/07 Javascript
setTimeout内不支持jquery的选择器的解决方案
2015/04/28 Javascript
使用Node.js为其他程序编写扩展的基本方法
2015/06/23 Javascript
Bootstrap每天必学之js插件
2015/11/30 Javascript
JS实现拖动滚动条评分的效果代码分享
2016/09/29 Javascript
JS/jQuery判断DOM节点是否存在的简单方法
2016/11/24 Javascript
微信小程序模板之分页滑动栏
2017/02/10 Javascript
JavaScript闭包与作用域链实例分析
2019/01/21 Javascript
vue的$http的get请求要加上params操作
2020/11/12 Javascript
[14:57]DOTA2 HEROS教学视频教你分分钟做大人-幽鬼
2014/06/13 DOTA
python学习数据结构实例代码
2015/05/11 Python
Django进阶之CSRF的解决
2018/08/01 Python
python三大神器之fabric使用教程
2019/06/10 Python
浅谈Python中threading join和setDaemon用法及区别说明
2020/05/02 Python
python 如何调用 dubbo 接口
2020/09/24 Python
如何使用html5与css3完成google涂鸦动画
2012/12/16 HTML / CSS
广州喜创信息技术有限公司JAVA软件工程师笔试题
2012/10/17 面试题
初一生物教学反思
2014/01/18 职场文书
拉拉队口号
2014/06/16 职场文书
2016年“5.12”护士节慰问信
2015/11/30 职场文书
Win11运行育碧游戏总是崩溃怎么办 win11玩育碧游戏出现性能崩溃的解决办法
2022/04/06 数码科技