python中文分词库jieba使用方法详解


Posted in Python onFebruary 11, 2020

安装python中文分词库jieba

法1:Anaconda Prompt下输入conda install jieba

法2:Terminal下输入pip3 install jieba

1、分词

1.1、CUT函数简介

cut(sentence, cut_all=False, HMM=True)

返回生成器,遍历生成器即可获得分词的结果

lcut(sentence)

返回分词列表

import jieba
sentence = '我爱自然语言处理'
# 创建【Tokenizer.cut 生成器】对象
generator = jieba.cut(sentence)
# 遍历生成器,打印分词结果
words = '/'.join(generator)
print(words)

打印结果

我/爱/自然语言/处理

import jieba
print(jieba.lcut('我爱南海中学'))

打印结果

[‘我', ‘爱', ‘南海中学']

1.2、分词模式

精确模式:精确地切开

全模式:所有可能的词语都切出,速度快

搜索引擎模式:在精确模式的基础上,对长词再次切分

import jieba
sentence = '订单数据分析'
print('精准模式:', jieba.lcut(sentence))
print('全模式:', jieba.lcut(sentence, cut_all=True))
print('搜索引擎模式:', jieba.lcut_for_search(sentence))

打印结果

精准模式: [‘订单', ‘数据分析']

全模式: [‘订单', ‘订单数', ‘单数', ‘数据', ‘数据分析', ‘分析']

搜索引擎模式: [‘订单', ‘数据', ‘分析', ‘数据分析']

1.3、词性标注

jieba.posseg
import jieba.posseg as jp
sentence = '我爱Python数据分析'
posseg = jp.cut(sentence)
for i in posseg:
 print(i.__dict__)
 # print(i.word, i.flag)

打印结果

{‘word': ‘我', ‘flag': ‘r'}
{‘word': ‘爱', ‘flag': ‘v'}
{‘word': ‘Python', ‘flag': ‘eng'}
{‘word': ‘数据分析', ‘flag': ‘l'}

词性标注表

标注 解释 标注 解释 标注 解释
a 形容词 mq 数量词 tg 时语素
ad 副形词 n 名词 u 助词
ag 形语素 ng 例:义 乳 亭 ud 例:得
an 名形词 nr 人名 ug 例:过
b 区别词 nrfg 也是人名 uj 例:的
c 连词 nrt 也是人名 ul 例:了
d 副词 ns 地名 uv 例:地
df 例:不要 nt 机构团体 uz 例:着
dg 副语素 nz 其他专名 v 动词
e 叹词 o 拟声词 vd 副动词
f 方位词 p 介词 vg 动语素
g 语素 q 量词 vi 例:沉溺于 等同于
h 前接成分 r 代词 vn 名动词
i 成语 rg 例:兹 vq 例:去? 去过 ??过
j 简称略语 rr 人称代词 x 非语素字
k 后接成分 rz 例:这位 y 语气词
l 习用语 s 处所词 z 状态词
m 数词 t 时间词 zg 例:且 ?F ?G

1.4、词语出现的位置

jieba.tokenize(sentence)
import jieba
sentence = '订单数据分析'
generator = jieba.tokenize(sentence)
for position in generator:
 print(position)

打印结果

(‘订单', 0, 2)
(‘数据分析', 2, 6)

2、词典

2.1、默认词典

import jieba, os, pandas as pd
# 词典所在位置
print(jieba.__file__)
jieba_dict = os.path.dirname(jieba.__file__) + r'\dict.txt'
# 读取字典
df = pd.read_table(jieba_dict, sep=' ', header=None)[[0, 2]]
print(df.head())
# 转字典
dt = dict(df.values)
print(dt.get('暨南大学'))

python中文分词库jieba使用方法详解

2.2、添词和删词

往词典添词

add_word(word, freq=None, tag=None)

往词典删词,等价于add_word(word, freq=0)

del_word(word)

import jieba
sentence = '天长地久有时尽,此恨绵绵无绝期'
# 添词
jieba.add_word('时尽', 999, 'nz')
print('添加【时尽】:', jieba.lcut(sentence))
# 删词
jieba.del_word('时尽')
print('删除【时尽】:', jieba.lcut(sentence))

打印结果

添加【时尽】: [‘天长地久', ‘有', ‘时尽', ‘,', ‘此恨绵绵', ‘无', ‘绝期']

删除【时尽】: [‘天长地久', ‘有时', ‘尽', ‘,', ‘此恨绵绵', ‘无', ‘绝期']

2.3、自定义词典加载

新建词典,按照格式【单词 词频 词性】添词,以UTF-8编码保存

使用函数load_userdict加载词典

import os, jieba
# 创建自定义字典
my_dict = 'my_dict.txt'
with open(my_dict, 'w', encoding='utf-8') as f:
 f.write('慕容紫英 9 nr\n云天河 9 nr\n天河剑 9 nz')
# 加载字典进行测试
sentence = '慕容紫英为云天河打造了天河剑'
print('加载前:', jieba.lcut(sentence))
jieba.load_userdict(my_dict)
print('加载后:', jieba.lcut(sentence))
os.remove(my_dict)

打印结果

加载前: [‘慕容', ‘紫英为', ‘云', ‘天河', ‘打造', ‘了', ‘天河', ‘剑']

加载后: [‘慕容紫英', ‘为', ‘云天河', ‘打造', ‘了', ‘天河剑']

2.4、使单词中的字符连接或拆分

suggest_freq(segment, tune=False)

import jieba
sentence = '上穷碧落下黄泉,两处茫茫皆不见'
print('修正前:', ' | '.join(jieba.cut(sentence)))
jieba.suggest_freq(('落', '下'), True)
print('修正后:', ' | '.join(jieba.cut(sentence)))

打印结果

修正前: 上穷 | 碧 | 落下 | 黄泉 | , | 两处 | 茫茫 | 皆 | 不见

修正后: 上穷 | 碧落 | 下 | 黄泉 | , | 两处 | 茫茫 | 皆 | 不见

3、jieba分词原理

基于词典,对句子进行词图扫描,生成所有成词情况所构成的有向无环图(Directed Acyclic Graph)

根据DAG,反向计算最大概率路径(动态规划算法;取对数防止下溢,乘法运算转为加法)

根据路径获取最大概率的分词序列

import jieba
sentence = '中心小学放假'
DAG = jieba.get_DAG(sentence)
print(DAG)
route = {}
jieba.calc(sentence, DAG, route)
print(route)

DAG

{0: [0, 1, 3], 1: [1], 2: [2, 3], 3: [3], 4: [4, 5], 5: [5]}

最大概率路径

{6: (0, 0), 5: (-9.4, 5), 4: (-12.6, 5), 3: (-20.8, 3), 2: (-22.5, 3), 1: (-30.8, 1), 0: (-29.5, 3)}

4、识别【带空格的词】

示例:使Blade Master这类中间有空格的词被识别

import jieba, re
sentence = 'Blade Master疾风刺杀Archmage'
jieba.add_word('Blade Master') # 添词
print('修改前:', jieba.lcut(sentence))
jieba.re_han_default = re.compile('(.+)', re.U) # 修改格式
print('修改后:', jieba.lcut(sentence))

打印结果

修改前: [‘Blade', ' ', ‘Master', ‘疾风', ‘刺杀', ‘Archmage']

修改后: [‘Blade Master', ‘疾风', ‘刺杀', ‘Archmage']

5、其它

5.1、并行分词

运行环境:linux系统

开启并行分词模式,参数n为并发数:jieba.enable_parallel(n)

关闭并行分词模式:jieba.disable_parallel()

5.2、关键词提取

基于TF-IDF:jieba.analyse

基于TextRank:jieba.textrank

import jieba.analyse as ja, jieba
text = '柳梦璃施法破解了狐仙的法术'
jieba.add_word('柳梦璃', tag='nr')
keywords1 = ja.extract_tags(text, allowPOS=('n', 'nr', 'ns', 'nt', 'nz'))
print('基于TF-IDF:', keywords1)
keywords2 = ja.textrank(text, allowPOS=('n', 'nr', 'ns', 'nt', 'nz'))
print('基于TextRank:', keywords2)

打印结果

基于TF-IDF: [‘柳梦璃', ‘狐仙', ‘法术']

基于TextRank: [‘狐仙', ‘柳梦璃', ‘法术']

5.3、修改HMM参数

import jieba
text = '柳梦璃解梦C法'
print(jieba.lcut(text, HMM=False)) # ['柳', '梦', '璃', '解梦', 'C', '法']
print(jieba.lcut(text)) # ['柳梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['B']['C'] = -1e-9 # begin
print(jieba.lcut(text)) # ['柳梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['M']['梦'] = -100 # middle
print(jieba.lcut(text)) # ['柳', '梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['S']['梦'] = -.1 # single
print(jieba.lcut(text)) # ['柳', '梦', '璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['E']['梦'] = -.01 # end
print(jieba.lcut(text)) # ['柳梦', '璃', '解梦', 'C', '法']
jieba.del_word('柳梦') # Force_Split_Words
print(jieba.lcut(text)) # ['柳', '梦', '璃', '解梦', 'C', '法']

print

[‘柳', ‘梦', ‘璃', ‘解梦', ‘C', ‘法']

[‘柳梦璃', ‘解梦', ‘C', ‘法']

[‘柳梦璃', ‘解梦', ‘C', ‘法']

[‘柳', ‘梦璃', ‘解梦', ‘C', ‘法']

[‘柳', ‘梦', ‘璃', ‘解梦', ‘C', ‘法']

[‘柳梦', ‘璃', ‘解梦', ‘C', ‘法']

[‘柳', ‘梦', ‘璃', ‘解梦', ‘C', ‘法']

更多关于python中文分词库jieba使用方法请查看下面的相关链接

Python 相关文章推荐
python实现下载文件的三种方法
Feb 09 Python
Sublime开发python程序的示例代码
Jan 24 Python
python的staticmethod与classmethod实现实例代码
Feb 11 Python
浅析python中numpy包中的argsort函数的使用
Aug 30 Python
浅谈python的输入输出,注释,基本数据类型
Apr 02 Python
python实现QQ空间自动点赞功能
Apr 09 Python
对python3 Serial 串口助手的接收读取数据方法详解
Jun 12 Python
学python安装的软件总结
Oct 12 Python
使用python快速在局域网内搭建http传输文件服务的方法
Nov 14 Python
python如何获取apk的packagename和activity
Jan 10 Python
TensorFlow dataset.shuffle、batch、repeat的使用详解
Jan 21 Python
代码总结Python2 和 Python3 字符串的区别
Jan 28 Python
Transpose 数组行列转置的限制方式
Feb 11 #Python
Tensorflow:转置函数 transpose的使用详解
Feb 11 #Python
tensorflow多维张量计算实例
Feb 11 #Python
python误差棒图errorbar()函数实例解析
Feb 11 #Python
解决Python3.8用pip安装turtle-0.0.2出现错误问题
Feb 11 #Python
python scatter函数用法实例详解
Feb 11 #Python
python可视化text()函数使用详解
Feb 11 #Python
You might like
php+mysqli使用预处理技术进行数据库查询的方法
2015/01/28 PHP
PHP模拟登陆163邮箱发邮件及获取通讯录列表的方法
2015/03/07 PHP
php中namespace及use用法分析
2016/12/06 PHP
Laravel框架使用Seeder实现自动填充数据功能
2018/06/13 PHP
ThinkPHP3.2.3框架邮件发送功能图文实例详解
2019/04/23 PHP
javascript 字符 Escape,encodeURI,encodeURIComponent
2009/07/09 Javascript
jquery控制listbox中项的移动并排序的实现代码
2010/09/28 Javascript
javascript实现复制与粘贴操作实例
2014/10/16 Javascript
javascript数组排序汇总
2015/07/07 Javascript
Javascript刷新窗口方法小结
2015/10/21 Javascript
js基础知识(公有方法、私有方法、特权方法)
2015/11/06 Javascript
简单实现js选项卡切换效果
2016/02/03 Javascript
JavaScript中数组去除重复的三种方法
2016/04/22 Javascript
Javascript表单特效之十大常用原理性样例代码大总结
2016/07/12 Javascript
Angularjs cookie 操作实例详解
2017/09/27 Javascript
webpack引入eslint配置详解
2018/01/22 Javascript
React学习笔记之高阶组件应用
2018/06/02 Javascript
layui 设置table 行的高度方法
2018/08/17 Javascript
vue的.vue文件是怎么run起来的(vue-loader)
2018/12/10 Javascript
ant design vue 表格table 默认勾选几项的操作
2020/10/31 Javascript
[08:04]TI4西雅图DOTA2前线报道 海涛探访各路人马
2014/07/09 DOTA
[00:55]深扒TI7聊天轮盘语音出处3
2017/05/11 DOTA
Python编程使用NLTK进行自然语言处理详解
2017/11/16 Python
在Python函数中输入任意数量参数的实例
2019/07/16 Python
利用python实现周期财务统计可视化
2019/08/25 Python
pandas条件组合筛选和按范围筛选的示例代码
2019/08/26 Python
python2与python3爬虫中get与post对比解析
2019/09/18 Python
Python嵌套函数,作用域与偏函数用法实例分析
2019/12/26 Python
通息工程毕业生自荐信
2013/10/16 职场文书
高中毕业生个人自我鉴定
2013/11/24 职场文书
战友聚会邀请函
2014/01/18 职场文书
法律进社区实施方案
2014/03/21 职场文书
个人对照检查材料思想汇报
2014/09/26 职场文书
运动会100米加油稿
2015/07/21 职场文书
结婚典礼致辞
2015/07/28 职场文书
浅谈Python实现opencv之图片色素的数值运算和逻辑运算
2021/06/23 Python