python networkx 包绘制复杂网络关系图的实现


Posted in Python onJuly 10, 2019

1. 创建一个图

import networkx as nx
g = nx.Graph()
g.clear() #将图上元素清空

所有的构建复杂网络图的操作基本都围绕这个g来执行。

2. 节点

节点的名字可以是任意数据类型的,添加一个节点是

g.add_node(1)
g.add_node("a")
g.add_node("spam")

添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的。

g.add_nodes_from([2,3])
or 
a = [2,3]
g.add_nodes_from(a)

这里需要值得注意的一点是,对于add_node加一个点来说,字符串是只添加了名字为整个字符串的节点。但是对于

add_nodes_from加一组点来说,字符串表示了添加了每一个字符都代表的多个节点,exp:
g.add_node("spam") #添加了一个名为spam的节点
g.add_nodes_from("spam") #添加了4个节点,名为s,p,a,m
g.nodes() #可以将以上5个节点打印出来看看

加一组从0开始的连续数字的节点

H = nx.path_graph(10)
g.add_nodes_from(H) #将0~9加入了节点
#但请勿使用g.add_node(H)

删除节点

与添加节点同理

g.remove_node(node_name)
g.remove_nodes_from(nodes_list)

3. 边

边是由对应节点的名字的元组组成,加一条边

g.add_edge(1,2)
e = (2,3)
g.add_edge(*e) #直接g.add_edge(e)数据类型不对,*是将元组中的元素取出

加一组边

g.add_edges_from([(1,2),(1,3)])
g.add_edges_from([("a","spam") , ("a",2)])

通过nx.path_graph(n)加一系列连续的边

n = 10
H = nx.path_graph(n)
g.add_edges_from(H.edges()) #添加了0~1,1~2 ... n-2~n-1这样的n-1条连续的边

删除边

同理添加边的操作

g.remove_edge(edge)
g.remove_edges_from(edges_list)

4. 查看图上点和边的信息

g.number_of_nodes() #查看点的数量
g.number_of_edges() #查看边的数量
g.nodes() #返回所有点的信息(list)
g.edges() #返回所有边的信息(list中每个元素是一个tuple)
g.neighbors(1) #所有与1这个点相连的点的信息以列表的形式返回
g[1] #查看所有与1相连的边的属性,格式输出:{0: {}, 2: {}} 表示1和0相连的边没有设置任何属性(也就是{}没有信息),同理1和2相连的边也没有任何属性

method explanation
Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len__() Return the number of nodes.
Graph.degree([nbunch, weight]) Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
Graph.size([weight]) Return the number of edges.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with_selfloops() Return a list of nodes with self loops.
Graph.selfloop_edges([data, default]) Return a list of selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

5. 图的属性设置

为图赋予初始属性

g = nx.Graph(day="Monday") 
g.graph # {'day': 'Monday'}

修改图的属性

g.graph['day'] = 'Tuesday'
g.graph # {'day': 'Tuesday'}

6. 点的属性设置

g.add_node('benz', money=10000, fuel="1.5L")
print g.node['benz'] # {'fuel': '1.5L', 'money': 10000}
print g.node['benz']['money'] # 10000
print g.nodes(data=True) # data默认false就是不输出属性信息,修改为true,会将节点名字和属性信息一起输出

7. 边的属性设置

通过上文中对g[1]的介绍可知边的属性在{}中显示出来,我们可以根据这个秀改变的属性

g.clear()
n = 10
H = nx.path_graph(n)
g.add_nodes_from(H)
g.add_edges_from(H.edges())
g[1][2]['color'] = 'blue'

g.add_edge(1, 2, weight=4.7)
g.add_edges_from([(3,4),(4,5)], color='red')
g.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
g[1][2]['weight'] = 4.7
g.edge[1][2]['weight'] = 4

8. 不同类型的图(有向图Directed graphs , 重边图 Multigraphs)

Directed graphs

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75), (1,4,0.3)]) # 添加带权值的边
print DG.out_degree(1) # 打印结果:2 表示:找到1的出度
print DG.out_degree(1, weight='weight') # 打印结果:0.8 表示:从1出去的边的权值和,这里权值是以weight属性值作为标准,如果你有一个money属性,那么也可以修改为weight='money',那么结果就是对money求和了
print DG.successors(1) # [2,4] 表示1的后继节点有2和4
print DG.predecessors(1) # [3] 表示只有一个节点3有指向1的连边

Multigraphs

简答从字面上理解就是这种复杂网络图允许你相同节点之间允许出现重边

MG=nx.MultiGraph()
MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
print MG.degree(weight='weight') # {1: 1.25, 2: 1.75, 3: 0.5}
GG=nx.Graph()
for n,nbrs in MG.adjacency_iter():
 for nbr,edict in nbrs.items():
  minvalue=min([d['weight'] for d in edict.values()])
  GG.add_edge(n,nbr, weight = minvalue)

print nx.shortest_path(GG,1,3) # [1, 2, 3]

9.  图的遍历

g = nx.Graph()
g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in g.adjacency_iter(): #n表示每一个起始点,nbrs是一个字典,字典中的每一个元素包含了这个起始点连接的点和这两个点连边对应的属性
 print n, nbrs
 for nbr,eattr in nbrs.items():
  # nbr表示跟n连接的点,eattr表示这两个点连边的属性集合,这里只设置了weight,如果你还设置了color,那么就可以通过eattr['color']访问到对应的color元素
  data=eattr['weight']
  if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))

10. 图生成和图上的一些操作

下方的这些操作都是在networkx包内的方法

subgraph(G, nbunch)  - induce subgraph of G on nodes in nbunch
union(G1,G2)    - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2)   - combine graphs identifying nodes common to both
complement(G)   - graph complement
create_empty_copy(G)  - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G

11. 图上分析

g = nx.Graph()
g.add_edges_from([(1,2), (1,3)])
g.add_node("spam") 
nx.connected_components(g) # [[1, 2, 3], ['spam']] 表示返回g上的不同连通块
sorted(nx.degree(g).values())

通过构建权值图,可以直接快速利用dijkstra_path()接口计算最短路程

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

12. 图的绘制

下面是4种图的构造方法,选择其中一个

nx.draw(g)
nx.draw_random(g) #点随机分布
nx.draw_circular(g) #点的分布形成一个环
nx.draw_spectral(g)

最后将图形表现出来

import matplotlib.pyplot as plt
plt.show()

将图片保存到下来

nx.draw(g)
plt.savefig("path.png")

修改节点颜色,边的颜色

g = nx.cubical_graph()
nx.draw(g, pos=nx.spectral_layout(g), nodecolor='r', edge_color='b')
plt.show()

13. 图形种类的选择

Graph Type NetworkX Class
简单无向图 Graph()
简单有向图 DiGraph()
有自环 Grap(),DiGraph()
有重边 MultiGraph(), MultiDiGraph()

reference:https://networkx.github.io/documentation/networkx-1.10/reference/classes.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python动态加载变量示例分享
Feb 17 Python
python中map()与zip()操作方法
Feb 27 Python
最大K个数问题的Python版解法总结
Jun 16 Python
python爬取w3shcool的JQuery课程并且保存到本地
Apr 06 Python
Python实现将通信达.day文件读取为DataFrame
Dec 22 Python
python3去掉string中的标点符号方法
Jan 22 Python
python在新的图片窗口显示图片(图像)的方法
Jul 11 Python
pytorch实现从本地加载 .pth 格式模型
Feb 14 Python
python GUI库图形界面开发之PyQt5窗口控件QWidget详细使用方法
Feb 26 Python
详解PyQt5信号与槽的几种高级玩法
Mar 24 Python
keras训练曲线,混淆矩阵,CNN层输出可视化实例
Jun 15 Python
Python实现一个简单的递归下降分析器
Aug 01 Python
python卸载后再次安装遇到的问题解决
Jul 10 #Python
Python求离散序列导数的示例
Jul 10 #Python
Python Matplotlib 基于networkx画关系网络图
Jul 10 #Python
我们为什么要减少Python中循环的使用
Jul 10 #Python
详解Python中的各种转义符\n\r\t
Jul 10 #Python
使用python画社交网络图实例代码
Jul 10 #Python
python 绘制拟合曲线并加指定点标识的实现
Jul 10 #Python
You might like
php设计模式之正面模式实例分析【星际争霸游戏案例】
2020/03/24 PHP
TP框架实现上传一张图片和批量上传图片的方法分析
2020/04/23 PHP
JQuery 国际象棋棋盘 实现代码
2009/06/26 Javascript
JQuery 实现的页面滚动时浮动窗口控件
2009/07/10 Javascript
Javascript学习笔记8 用JSON做原型
2010/01/11 Javascript
javascript获取下拉列表框当中的文本值示例代码
2013/07/31 Javascript
JavaScript中的Web worker多线程API研究
2014/12/06 Javascript
深入理解JavaScript系列(44):设计模式之桥接模式详解
2015/03/04 Javascript
手机端页面rem宽度自适应脚本
2015/05/20 Javascript
jQuery基于ajax()使用serialize()提交form数据的方法
2015/12/08 Javascript
jquery捕捉回车键及获取checkbox值与异步请求的方法
2015/12/24 Javascript
用window.onerror捕获并上报Js错误的方法
2016/01/27 Javascript
AngularJS 自定义指令详解及示例代码
2016/08/17 Javascript
关于js函数解释(包括内嵌,对象等)
2016/11/20 Javascript
Bootstrap基本插件学习笔记之轮播幻灯片(23)
2016/12/08 Javascript
jQuery实现立体式数字滚动条增加效果
2016/12/21 Javascript
jQuery实现点击关注和取消功能
2017/07/03 jQuery
在vue中多次调用同一个定义全局变量的实例
2018/09/25 Javascript
iview通过Dropdown(下拉菜单)实现的右键菜单
2018/10/26 Javascript
JavaScript&quot;模拟事件&quot;的注意要点详解
2019/02/13 Javascript
JS中注入eval, Function等系统函数截获动态代码
2019/04/03 Javascript
JavaScript 空间坐标的使用
2020/08/19 Javascript
[51:20]完美世界DOTA2联赛PWL S2 Magma vs PXG 第一场 11.28
2020/12/01 DOTA
Python中psutil的介绍与用法
2019/05/02 Python
Hertz荷兰:荷兰和全球租车
2018/01/07 全球购物
波兰最大的度假胜地和城市公寓租赁运营商:Sun & Snow
2018/10/18 全球购物
怎样让char类型的东西转换成int类型
2013/12/09 面试题
请编写一个 C 函数,该函数在给定的内存区域搜索给定的字符,并返回该字符所在位置索引值
2014/09/15 面试题
本科生详细的自我评价
2013/09/19 职场文书
致400米运动员广播稿
2014/02/07 职场文书
我们的节日中秋节活动总结
2015/03/23 职场文书
2015年档案管理员工作总结
2015/05/13 职场文书
幼儿园教师读书笔记
2015/06/29 职场文书
大学生创业计划书
2019/06/24 职场文书
使用CSS实现一个搜索引擎的原理解析
2021/09/25 HTML / CSS
MySQL实战记录之如何快速定位慢SQL
2022/03/23 MySQL