python networkx 包绘制复杂网络关系图的实现


Posted in Python onJuly 10, 2019

1. 创建一个图

import networkx as nx
g = nx.Graph()
g.clear() #将图上元素清空

所有的构建复杂网络图的操作基本都围绕这个g来执行。

2. 节点

节点的名字可以是任意数据类型的,添加一个节点是

g.add_node(1)
g.add_node("a")
g.add_node("spam")

添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的。

g.add_nodes_from([2,3])
or 
a = [2,3]
g.add_nodes_from(a)

这里需要值得注意的一点是,对于add_node加一个点来说,字符串是只添加了名字为整个字符串的节点。但是对于

add_nodes_from加一组点来说,字符串表示了添加了每一个字符都代表的多个节点,exp:
g.add_node("spam") #添加了一个名为spam的节点
g.add_nodes_from("spam") #添加了4个节点,名为s,p,a,m
g.nodes() #可以将以上5个节点打印出来看看

加一组从0开始的连续数字的节点

H = nx.path_graph(10)
g.add_nodes_from(H) #将0~9加入了节点
#但请勿使用g.add_node(H)

删除节点

与添加节点同理

g.remove_node(node_name)
g.remove_nodes_from(nodes_list)

3. 边

边是由对应节点的名字的元组组成,加一条边

g.add_edge(1,2)
e = (2,3)
g.add_edge(*e) #直接g.add_edge(e)数据类型不对,*是将元组中的元素取出

加一组边

g.add_edges_from([(1,2),(1,3)])
g.add_edges_from([("a","spam") , ("a",2)])

通过nx.path_graph(n)加一系列连续的边

n = 10
H = nx.path_graph(n)
g.add_edges_from(H.edges()) #添加了0~1,1~2 ... n-2~n-1这样的n-1条连续的边

删除边

同理添加边的操作

g.remove_edge(edge)
g.remove_edges_from(edges_list)

4. 查看图上点和边的信息

g.number_of_nodes() #查看点的数量
g.number_of_edges() #查看边的数量
g.nodes() #返回所有点的信息(list)
g.edges() #返回所有边的信息(list中每个元素是一个tuple)
g.neighbors(1) #所有与1这个点相连的点的信息以列表的形式返回
g[1] #查看所有与1相连的边的属性,格式输出:{0: {}, 2: {}} 表示1和0相连的边没有设置任何属性(也就是{}没有信息),同理1和2相连的边也没有任何属性

method explanation
Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len__() Return the number of nodes.
Graph.degree([nbunch, weight]) Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
Graph.size([weight]) Return the number of edges.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with_selfloops() Return a list of nodes with self loops.
Graph.selfloop_edges([data, default]) Return a list of selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

5. 图的属性设置

为图赋予初始属性

g = nx.Graph(day="Monday") 
g.graph # {'day': 'Monday'}

修改图的属性

g.graph['day'] = 'Tuesday'
g.graph # {'day': 'Tuesday'}

6. 点的属性设置

g.add_node('benz', money=10000, fuel="1.5L")
print g.node['benz'] # {'fuel': '1.5L', 'money': 10000}
print g.node['benz']['money'] # 10000
print g.nodes(data=True) # data默认false就是不输出属性信息,修改为true,会将节点名字和属性信息一起输出

7. 边的属性设置

通过上文中对g[1]的介绍可知边的属性在{}中显示出来,我们可以根据这个秀改变的属性

g.clear()
n = 10
H = nx.path_graph(n)
g.add_nodes_from(H)
g.add_edges_from(H.edges())
g[1][2]['color'] = 'blue'

g.add_edge(1, 2, weight=4.7)
g.add_edges_from([(3,4),(4,5)], color='red')
g.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
g[1][2]['weight'] = 4.7
g.edge[1][2]['weight'] = 4

8. 不同类型的图(有向图Directed graphs , 重边图 Multigraphs)

Directed graphs

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75), (1,4,0.3)]) # 添加带权值的边
print DG.out_degree(1) # 打印结果:2 表示:找到1的出度
print DG.out_degree(1, weight='weight') # 打印结果:0.8 表示:从1出去的边的权值和,这里权值是以weight属性值作为标准,如果你有一个money属性,那么也可以修改为weight='money',那么结果就是对money求和了
print DG.successors(1) # [2,4] 表示1的后继节点有2和4
print DG.predecessors(1) # [3] 表示只有一个节点3有指向1的连边

Multigraphs

简答从字面上理解就是这种复杂网络图允许你相同节点之间允许出现重边

MG=nx.MultiGraph()
MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
print MG.degree(weight='weight') # {1: 1.25, 2: 1.75, 3: 0.5}
GG=nx.Graph()
for n,nbrs in MG.adjacency_iter():
 for nbr,edict in nbrs.items():
  minvalue=min([d['weight'] for d in edict.values()])
  GG.add_edge(n,nbr, weight = minvalue)

print nx.shortest_path(GG,1,3) # [1, 2, 3]

9.  图的遍历

g = nx.Graph()
g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in g.adjacency_iter(): #n表示每一个起始点,nbrs是一个字典,字典中的每一个元素包含了这个起始点连接的点和这两个点连边对应的属性
 print n, nbrs
 for nbr,eattr in nbrs.items():
  # nbr表示跟n连接的点,eattr表示这两个点连边的属性集合,这里只设置了weight,如果你还设置了color,那么就可以通过eattr['color']访问到对应的color元素
  data=eattr['weight']
  if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))

10. 图生成和图上的一些操作

下方的这些操作都是在networkx包内的方法

subgraph(G, nbunch)  - induce subgraph of G on nodes in nbunch
union(G1,G2)    - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2)   - combine graphs identifying nodes common to both
complement(G)   - graph complement
create_empty_copy(G)  - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G

11. 图上分析

g = nx.Graph()
g.add_edges_from([(1,2), (1,3)])
g.add_node("spam") 
nx.connected_components(g) # [[1, 2, 3], ['spam']] 表示返回g上的不同连通块
sorted(nx.degree(g).values())

通过构建权值图,可以直接快速利用dijkstra_path()接口计算最短路程

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

12. 图的绘制

下面是4种图的构造方法,选择其中一个

nx.draw(g)
nx.draw_random(g) #点随机分布
nx.draw_circular(g) #点的分布形成一个环
nx.draw_spectral(g)

最后将图形表现出来

import matplotlib.pyplot as plt
plt.show()

将图片保存到下来

nx.draw(g)
plt.savefig("path.png")

修改节点颜色,边的颜色

g = nx.cubical_graph()
nx.draw(g, pos=nx.spectral_layout(g), nodecolor='r', edge_color='b')
plt.show()

13. 图形种类的选择

Graph Type NetworkX Class
简单无向图 Graph()
简单有向图 DiGraph()
有自环 Grap(),DiGraph()
有重边 MultiGraph(), MultiDiGraph()

reference:https://networkx.github.io/documentation/networkx-1.10/reference/classes.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 列表list使用介绍
Nov 30 Python
python使用smtplib模块通过gmail实现邮件发送的方法
May 08 Python
python读取word文档的方法
May 09 Python
Zabbix实现微信报警功能
Oct 09 Python
手把手教你如何安装Pycharm(详细图文教程)
Nov 28 Python
Python并发:多线程与多进程的详解
Jan 24 Python
python实现文件助手中查看微信撤回消息
Apr 29 Python
远程部署工具Fabric详解(支持Python3)
Jul 04 Python
套娃式文件夹如何通过Python批量处理
Aug 23 Python
详解python 支持向量机(SVM)算法
Sep 18 Python
详解查看Python解释器路径的两种方式
Oct 15 Python
Python基于argparse与ConfigParser库进行入参解析与ini parser
Feb 02 Python
python卸载后再次安装遇到的问题解决
Jul 10 #Python
Python求离散序列导数的示例
Jul 10 #Python
Python Matplotlib 基于networkx画关系网络图
Jul 10 #Python
我们为什么要减少Python中循环的使用
Jul 10 #Python
详解Python中的各种转义符\n\r\t
Jul 10 #Python
使用python画社交网络图实例代码
Jul 10 #Python
python 绘制拟合曲线并加指定点标识的实现
Jul 10 #Python
You might like
用libTemplate实现静态网页的生成
2006/10/09 PHP
php去除html标记的原生函数详解
2015/01/27 PHP
PHP接口继承及接口多继承原理与实现方法详解
2017/10/18 PHP
php高性能日志系统 seaslog 的安装与使用方法分析
2020/02/29 PHP
用js实现的抽象CSS圆角效果!!
2007/05/03 Javascript
javascript运行机制之this详细介绍
2014/02/07 Javascript
浅谈JavaScript中的String对象常用方法
2015/02/25 Javascript
asp知识整理笔记3(问答模式)
2015/09/27 Javascript
js表单中选择框值的获取及表单的序列化
2015/12/17 Javascript
JS、jQuery中select的用法详解
2016/04/21 Javascript
全面接触神奇的Bootstrap导航条实战篇
2016/08/01 Javascript
seajs模块之间依赖的加载以及模块的执行
2016/10/21 Javascript
深入理解vue路由的使用
2017/03/24 Javascript
详解Vue2.X的路由管理记录之 钩子函数(切割流水线)
2017/05/02 Javascript
axios携带cookie配置详解(axios+koa)
2018/12/28 Javascript
javascript异步编程的六种方式总结
2019/05/17 Javascript
让 babel webpack vue 配置文件支持智能提示的方法
2019/06/22 Javascript
Vue项目实现简单的权限控制管理功能
2019/07/17 Javascript
12 种使用Vue 的最佳做法
2020/03/30 Javascript
解决vue中使用less/sass及使用中遇到无效的问题
2020/10/24 Javascript
[01:03:36]Ti4 循环赛第三日DK vs Titan
2014/07/12 DOTA
[01:03:22]LGD vs OG 2018国际邀请赛淘汰赛BO3 第一场 8.25
2018/08/29 DOTA
Python中functools模块的常用函数解析
2016/06/30 Python
Python实现的FTP通信客户端与服务器端功能示例
2018/03/28 Python
python实现动态数组的示例代码
2019/07/15 Python
Python的Tkinter点击按钮触发事件的例子
2019/07/19 Python
python flask web服务实现更换默认端口和IP的方法
2019/07/26 Python
Python实现把类当做字典来访问
2019/12/16 Python
西班牙创意礼品和小工具网上商店:Curiosite
2016/07/26 全球购物
副总经理岗位职责
2014/03/16 职场文书
身边的榜样活动方案
2014/08/20 职场文书
五好家庭申报材料
2014/12/20 职场文书
2015年宣传思想工作总结
2015/05/22 职场文书
地雷战观后感
2015/06/09 职场文书
《卖火柴的小女孩》教学反思
2016/02/19 职场文书
多人盗宝《绿林侠盗》第三赛季4.5上线 跨平台实装
2022/04/03 其他游戏