python networkx 包绘制复杂网络关系图的实现


Posted in Python onJuly 10, 2019

1. 创建一个图

import networkx as nx
g = nx.Graph()
g.clear() #将图上元素清空

所有的构建复杂网络图的操作基本都围绕这个g来执行。

2. 节点

节点的名字可以是任意数据类型的,添加一个节点是

g.add_node(1)
g.add_node("a")
g.add_node("spam")

添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的。

g.add_nodes_from([2,3])
or 
a = [2,3]
g.add_nodes_from(a)

这里需要值得注意的一点是,对于add_node加一个点来说,字符串是只添加了名字为整个字符串的节点。但是对于

add_nodes_from加一组点来说,字符串表示了添加了每一个字符都代表的多个节点,exp:
g.add_node("spam") #添加了一个名为spam的节点
g.add_nodes_from("spam") #添加了4个节点,名为s,p,a,m
g.nodes() #可以将以上5个节点打印出来看看

加一组从0开始的连续数字的节点

H = nx.path_graph(10)
g.add_nodes_from(H) #将0~9加入了节点
#但请勿使用g.add_node(H)

删除节点

与添加节点同理

g.remove_node(node_name)
g.remove_nodes_from(nodes_list)

3. 边

边是由对应节点的名字的元组组成,加一条边

g.add_edge(1,2)
e = (2,3)
g.add_edge(*e) #直接g.add_edge(e)数据类型不对,*是将元组中的元素取出

加一组边

g.add_edges_from([(1,2),(1,3)])
g.add_edges_from([("a","spam") , ("a",2)])

通过nx.path_graph(n)加一系列连续的边

n = 10
H = nx.path_graph(n)
g.add_edges_from(H.edges()) #添加了0~1,1~2 ... n-2~n-1这样的n-1条连续的边

删除边

同理添加边的操作

g.remove_edge(edge)
g.remove_edges_from(edges_list)

4. 查看图上点和边的信息

g.number_of_nodes() #查看点的数量
g.number_of_edges() #查看边的数量
g.nodes() #返回所有点的信息(list)
g.edges() #返回所有边的信息(list中每个元素是一个tuple)
g.neighbors(1) #所有与1这个点相连的点的信息以列表的形式返回
g[1] #查看所有与1相连的边的属性,格式输出:{0: {}, 2: {}} 表示1和0相连的边没有设置任何属性(也就是{}没有信息),同理1和2相连的边也没有任何属性

method explanation
Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len__() Return the number of nodes.
Graph.degree([nbunch, weight]) Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
Graph.size([weight]) Return the number of edges.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with_selfloops() Return a list of nodes with self loops.
Graph.selfloop_edges([data, default]) Return a list of selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

5. 图的属性设置

为图赋予初始属性

g = nx.Graph(day="Monday") 
g.graph # {'day': 'Monday'}

修改图的属性

g.graph['day'] = 'Tuesday'
g.graph # {'day': 'Tuesday'}

6. 点的属性设置

g.add_node('benz', money=10000, fuel="1.5L")
print g.node['benz'] # {'fuel': '1.5L', 'money': 10000}
print g.node['benz']['money'] # 10000
print g.nodes(data=True) # data默认false就是不输出属性信息,修改为true,会将节点名字和属性信息一起输出

7. 边的属性设置

通过上文中对g[1]的介绍可知边的属性在{}中显示出来,我们可以根据这个秀改变的属性

g.clear()
n = 10
H = nx.path_graph(n)
g.add_nodes_from(H)
g.add_edges_from(H.edges())
g[1][2]['color'] = 'blue'

g.add_edge(1, 2, weight=4.7)
g.add_edges_from([(3,4),(4,5)], color='red')
g.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
g[1][2]['weight'] = 4.7
g.edge[1][2]['weight'] = 4

8. 不同类型的图(有向图Directed graphs , 重边图 Multigraphs)

Directed graphs

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75), (1,4,0.3)]) # 添加带权值的边
print DG.out_degree(1) # 打印结果:2 表示:找到1的出度
print DG.out_degree(1, weight='weight') # 打印结果:0.8 表示:从1出去的边的权值和,这里权值是以weight属性值作为标准,如果你有一个money属性,那么也可以修改为weight='money',那么结果就是对money求和了
print DG.successors(1) # [2,4] 表示1的后继节点有2和4
print DG.predecessors(1) # [3] 表示只有一个节点3有指向1的连边

Multigraphs

简答从字面上理解就是这种复杂网络图允许你相同节点之间允许出现重边

MG=nx.MultiGraph()
MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
print MG.degree(weight='weight') # {1: 1.25, 2: 1.75, 3: 0.5}
GG=nx.Graph()
for n,nbrs in MG.adjacency_iter():
 for nbr,edict in nbrs.items():
  minvalue=min([d['weight'] for d in edict.values()])
  GG.add_edge(n,nbr, weight = minvalue)

print nx.shortest_path(GG,1,3) # [1, 2, 3]

9.  图的遍历

g = nx.Graph()
g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in g.adjacency_iter(): #n表示每一个起始点,nbrs是一个字典,字典中的每一个元素包含了这个起始点连接的点和这两个点连边对应的属性
 print n, nbrs
 for nbr,eattr in nbrs.items():
  # nbr表示跟n连接的点,eattr表示这两个点连边的属性集合,这里只设置了weight,如果你还设置了color,那么就可以通过eattr['color']访问到对应的color元素
  data=eattr['weight']
  if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))

10. 图生成和图上的一些操作

下方的这些操作都是在networkx包内的方法

subgraph(G, nbunch)  - induce subgraph of G on nodes in nbunch
union(G1,G2)    - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2)   - combine graphs identifying nodes common to both
complement(G)   - graph complement
create_empty_copy(G)  - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G

11. 图上分析

g = nx.Graph()
g.add_edges_from([(1,2), (1,3)])
g.add_node("spam") 
nx.connected_components(g) # [[1, 2, 3], ['spam']] 表示返回g上的不同连通块
sorted(nx.degree(g).values())

通过构建权值图,可以直接快速利用dijkstra_path()接口计算最短路程

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

12. 图的绘制

下面是4种图的构造方法,选择其中一个

nx.draw(g)
nx.draw_random(g) #点随机分布
nx.draw_circular(g) #点的分布形成一个环
nx.draw_spectral(g)

最后将图形表现出来

import matplotlib.pyplot as plt
plt.show()

将图片保存到下来

nx.draw(g)
plt.savefig("path.png")

修改节点颜色,边的颜色

g = nx.cubical_graph()
nx.draw(g, pos=nx.spectral_layout(g), nodecolor='r', edge_color='b')
plt.show()

13. 图形种类的选择

Graph Type NetworkX Class
简单无向图 Graph()
简单有向图 DiGraph()
有自环 Grap(),DiGraph()
有重边 MultiGraph(), MultiDiGraph()

reference:https://networkx.github.io/documentation/networkx-1.10/reference/classes.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python和Ruby中each循环引用变量问题(一个隐秘BUG?)
Jun 04 Python
Python之str操作方法(详解)
Jun 19 Python
详解Selenium+PhantomJS+python简单实现爬虫的功能
Jul 14 Python
python 3.6.7实现端口扫描器
Sep 04 Python
python同时替换多个字符串方法示例
Sep 17 Python
python定间隔取点(np.linspace)的实现
Nov 27 Python
Python操作Sonqube API获取检测结果并打印过程解析
Nov 27 Python
django连接mysql数据库及建表操作实例详解
Dec 10 Python
pytorch+lstm实现的pos示例
Jan 14 Python
解决django中form表单设置action后无法回到原页面的问题
Mar 13 Python
Python Django中的STATIC_URL 设置和使用方式
Mar 27 Python
Python 实现将某一列设置为str类型
Jul 14 Python
python卸载后再次安装遇到的问题解决
Jul 10 #Python
Python求离散序列导数的示例
Jul 10 #Python
Python Matplotlib 基于networkx画关系网络图
Jul 10 #Python
我们为什么要减少Python中循环的使用
Jul 10 #Python
详解Python中的各种转义符\n\r\t
Jul 10 #Python
使用python画社交网络图实例代码
Jul 10 #Python
python 绘制拟合曲线并加指定点标识的实现
Jul 10 #Python
You might like
把从SQL中取出的数据转化成XMl格式
2006/10/09 PHP
在PHP中使用FastCGI解析漏洞及修复方案
2015/11/10 PHP
PHP数组中头部和尾部添加元素的方法(array_unshift,array_push)
2017/04/10 PHP
iis 7下安装laravel 5.4环境的方法教程
2017/06/14 PHP
利用PHP判断是否是连乘数字串的方法示例
2017/07/03 PHP
Laravel模糊查询区分大小写的实例
2019/09/29 PHP
分享20多个很棒的jQuery 文件上传插件或教程
2011/09/04 Javascript
ExtJS4如何自动生成控制grid的列显示、隐藏的checkbox
2014/05/02 Javascript
javascript实现避免页面按钮重复提交
2015/01/08 Javascript
html的DOM中document对象forms集合用法实例
2015/01/21 Javascript
浅谈JavaScript中的Math.atan()方法的使用
2015/06/14 Javascript
JavaScript 封装一个tab效果源码分享
2015/09/15 Javascript
简单实现JS对dom操作封装
2015/12/02 Javascript
很全面的JavaScript常用功能汇总集合
2016/01/22 Javascript
jQuery获取复选框被选中数量及判断选择值的方法详解
2016/05/25 Javascript
jquery表单验证插件validation使用方法详解
2017/01/20 Javascript
Node.js+ELK日志规范的实现
2019/05/23 Javascript
vue element 生成无线级左侧菜单的实现代码
2019/08/21 Javascript
详解javascript中var与ES6规范中let、const区别与用法
2020/01/11 Javascript
[17:00]DOTA2 HEROS教学视频教你分分钟做大人-帕克
2014/06/10 DOTA
Python 自动刷博客浏览量实例代码
2017/06/14 Python
Python实现PS滤镜特效之扇形变换效果示例
2018/01/26 Python
在python中使用xlrd获取合并单元格的方法
2018/12/26 Python
python将pandas datarame保存为txt文件的实例
2019/02/12 Python
python 判断三个数字中的最大值实例代码
2019/07/24 Python
使用pyecharts1.7进行简单的可视化大全
2020/05/17 Python
pandas map(),apply(),applymap()区别解析
2021/02/24 Python
css3图片边框border-image的用法
2017/06/30 HTML / CSS
详解css3中的伪类before和after常见用法
2020/11/17 HTML / CSS
美国钻石商店:Zales
2016/11/20 全球购物
小区推广策划方案
2014/06/06 职场文书
大学生推广普通话演讲稿
2014/09/21 职场文书
2014红色之旅心得体会
2014/10/07 职场文书
班级班风口号大全
2015/12/25 职场文书
Python自然语言处理之切分算法详解
2021/04/25 Python
golang操作redis的客户端包有多个比如redigo、go-redis
2022/04/14 Golang