python实现泊松图像融合


Posted in Python onJuly 26, 2018

本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下

```
from __future__ import division
import numpy as np 
import scipy.fftpack
import scipy.ndimage
import cv2
import matplotlib.pyplot as plt 
#sns.set(style="darkgrid")


def DST(x):
  """
  Converts Scipy's DST output to Matlab's DST (scaling).
  """
  X = scipy.fftpack.dst(x,type=1,axis=0)
  return X/2.0

def IDST(X):
  """
  Inverse DST. Python -> Matlab
  """
  n = X.shape[0]
  x = np.real(scipy.fftpack.idst(X,type=1,axis=0))
  return x/(n+1.0)

def get_grads(im):
  """
  return the x and y gradients.
  """
  [H,W] = im.shape
  Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dx[j,k] = im[j,k+1] - im[j,k]
  Dy[j,k] = im[j+1,k] - im[j,k]
  return Dx,Dy

def get_laplacian(Dx,Dy):
  """
  return the laplacian
  """
  [H,W] = Dx.shape
  Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k] 
  Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]
  return Dxx+Dyy

def poisson_solve(gx,gy,bnd):
  # convert to double:
  gx = gx.astype('float32')
  gy = gy.astype('float32')
  bnd = bnd.astype('float32')

  H,W = bnd.shape
  L = get_laplacian(gx,gy)

  # set the interior of the boundary-image to 0:
  bnd[1:-1,1:-1] = 0
  # get the boundary laplacian:
  L_bp = np.zeros_like(L)
  L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \
           + bnd[1:-1,2:] + bnd[1:-1,0:-2] \
           + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x
  L = L - L_bp
  L = L[1:-1,1:-1]

  # compute the 2D DST:
  L_dst = DST(DST(L).T).T #first along columns, then along rows

  # normalize:
  [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))
  D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)
  L_dst = L_dst/D

  img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns

  img = bnd.copy()

  img[1:-1,1:-1] = img_interior

  return img

def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):
  """
  combine images using poission editing.
  IM_TOP and IM_BACK should be of the same size.
  """
  assert np.all(im_top.shape==im_back.shape)

  im_top = im_top.copy().astype('float32')
  im_back = im_back.copy().astype('float32')
  im_res = np.zeros_like(im_top)

  # frac of gradients which come from source:
  for ch in xrange(im_top.shape[2]):
    ims = im_top[:,:,ch]
    imd = im_back[:,:,ch]

    [gxs,gys] = get_grads(ims)
    [gxd,gyd] = get_grads(imd)

    gxs *= scale_grad
    gys *= scale_grad

    gxs_idx = gxs!=0
    gys_idx = gys!=0
    # mix the source and target gradients:
    if mode=='max':
      gx = gxs.copy()
      gxm = (np.abs(gxd))>np.abs(gxs)
      gx[gxm] = gxd[gxm]

      gy = gys.copy()
      gym = np.abs(gyd)>np.abs(gys)
      gy[gym] = gyd[gym]

      # get gradient mixture statistics:
      f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)
      f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)
      if min(f_gx, f_gy) <= 0.35:
        m = 'max'
        if scale_grad > 1:
          m = 'blend'
        return blit_images(im_top, im_back, scale_grad=1.5, mode=m)

    elif mode=='src':
      gx,gy = gxd.copy(), gyd.copy()
      gx[gxs_idx] = gxs[gxs_idx]
      gy[gys_idx] = gys[gys_idx]

    elif mode=='blend': # from recursive call:
      # just do an alpha blend
      gx = gxs+gxd
      gy = gys+gyd

    im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)

  return im_res.astype('uint8')


def contiguous_regions(mask):
  """
  return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
  True and we cover all such regions
  """
  in_region = None
  boundaries = []
  for i, val in enumerate(mask):
    if in_region is None and val:
      in_region = i
    elif in_region is not None and not val:
      boundaries.append((in_region, i))
      in_region = None

  if in_region is not None:
    boundaries.append((in_region, i+1))
  return boundaries


if __name__=='__main__':
  """
  example usage:
  """
  import seaborn as sns

  im_src = cv2.imread('../f01006.jpg').astype('float32')

  im_dst = cv2.imread('../f01006-5.jpg').astype('float32')

  mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)
  # print mu
  sz = (1920,1080)
  im_src = cv2.resize(im_src,sz)
  im_dst = cv2.resize(im_dst,sz)

  im0 = im_dst[:,:,0] > 100
  im_dst[im0,:] = im_src[im0,:]
  im_dst[~im0,:] = 50
  im_dst = cv2.GaussianBlur(im_dst,(5,5),5)

  im_alpha = 0.8*im_dst + 0.2*im_src

  # plt.imshow(im_dst)
  # plt.show()

  im_res = blit_images(im_src,im_dst)

  import scipy
  scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))

  im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]

  # plt.imshow(im_alpha_L)
  # plt.show()
  for i in xrange(500,im_alpha_L.shape[1],5):
    l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]
    l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]
    l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]


    with sns.axes_style("darkgrid"):
      plt.subplot(2,1,2)
      #plt.plot(l_alpha,label='alpha')

      plt.plot(l_poisson,label='poisson')
      plt.hold(True)
      plt.plot(l_actual,label='actual')
      plt.legend()

      # find "text regions":
      is_txt = ~im0[i,:]
      t_loc = contiguous_regions(is_txt)
      ax = plt.gca()
      for b0,b1 in t_loc:
        ax.axvspan(b0, b1, facecolor='red', alpha=0.1)

    with sns.axes_style("white"):
      plt.subplot(2,1,1)
      plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
      plt.hold(True)
      plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')
      plt.axis('image')
      plt.show()


  plt.subplot(1,3,1)
  plt.imshow(im_src[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,2)
  plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,3)  
  plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python MD5文件生成码
Jan 12 Python
Python访问MySQL封装的常用类实例
Nov 11 Python
vscode 远程调试python的方法
Dec 01 Python
对python pandas 画移动平均线的方法详解
Nov 28 Python
Python对接六大主流数据库(只需三步)
Jul 31 Python
Python队列、进程间通信、线程案例
Oct 25 Python
python中的subprocess.Popen()使用详解
Dec 25 Python
利用python下载scihub成文献为PDF操作
Jul 09 Python
Python子进程subpocess原理及用法解析
Jul 16 Python
基于python实现删除指定文件类型
Jul 21 Python
解决python便携版无法直接运行py文件的问题
Sep 01 Python
Python中字符串对象语法分享
Feb 24 Python
python中的decorator的作用详解
Jul 26 #Python
python opencv实现旋转矩形框裁减功能
Jul 25 #Python
Python3匿名函数用法示例
Jul 25 #Python
Python实现动态添加属性和方法操作示例
Jul 25 #Python
利用pandas读取中文数据集的方法
Jul 25 #Python
利用pandas进行大文件计数处理的方法
Jul 25 #Python
使用python验证代理ip是否可用的实现方法
Jul 25 #Python
You might like
php递归删除目录下的文件但保留的实例分享
2014/05/10 PHP
PHP使用CURL实现多线程抓取网页
2015/04/30 PHP
PHP应用跨时区功能的实现方法
2019/03/21 PHP
Laravel框架查询构造器简单示例
2019/05/08 PHP
jquery实现瀑布流效果分享
2014/03/26 Javascript
2014 HTML5/CSS3热门动画特效TOP10
2014/12/07 Javascript
JavaScript创建一个object对象并操作对象属性的用法
2015/03/23 Javascript
浅谈javascript的分号的使用
2015/05/12 Javascript
百度地图API之百度地图退拽标记点获取经纬度的实现代码
2017/01/12 Javascript
Vue监听数组变化源码解析
2017/03/09 Javascript
JS+HTML5 FileReader对象用法示例
2017/04/07 Javascript
vue基于Vue2.0和高德地图的地图组件实例
2017/04/28 Javascript
IntersectionObserver实现图片懒加载的示例
2017/09/29 Javascript
nodejs取得当前执行路径的方法
2018/05/13 NodeJs
用Electron写个带界面的nodejs爬虫的实现方法
2019/01/29 NodeJs
bootstrap tooltips在 angularJS中的使用方法
2019/04/10 Javascript
ES6模板字符串和标签模板的应用实例分析
2019/06/25 Javascript
解决VUE自定义拖拽指令时 onmouseup 与 click事件冲突问题
2020/07/24 Javascript
VUE项目axios请求头更改Content-Type操作
2020/07/24 Javascript
vue3.0实现插件封装
2020/12/14 Vue.js
微信小程序onShareTimeline()实现分享朋友圈
2021/01/07 Javascript
python学习基础之循环import及import过程
2018/04/22 Python
Python使用re模块实现信息筛选的方法
2018/04/29 Python
简单谈谈python基本数据类型
2018/09/26 Python
基于Django OneToOneField和ForeignKey的区别详解
2020/03/30 Python
django使用多个数据库的方法实例
2021/03/04 Python
护理不良事件检讨书
2014/02/06 职场文书
《我不是最弱小的》教学反思
2014/02/23 职场文书
护理助产毕业生的求职信
2014/03/02 职场文书
三分钟演讲稿范文
2014/04/24 职场文书
交通志愿者活动总结
2014/06/27 职场文书
2016年度创先争优活动总结
2016/04/05 职场文书
受欢迎的自荐信,就这么写!
2019/04/19 职场文书
python 实现的截屏工具
2021/05/08 Python
详解非极大值抑制算法之Python实现
2021/06/28 Python
python脚本框架webpy模板赋值实现
2021/11/20 Python