python实现泊松图像融合


Posted in Python onJuly 26, 2018

本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下

```
from __future__ import division
import numpy as np 
import scipy.fftpack
import scipy.ndimage
import cv2
import matplotlib.pyplot as plt 
#sns.set(style="darkgrid")


def DST(x):
  """
  Converts Scipy's DST output to Matlab's DST (scaling).
  """
  X = scipy.fftpack.dst(x,type=1,axis=0)
  return X/2.0

def IDST(X):
  """
  Inverse DST. Python -> Matlab
  """
  n = X.shape[0]
  x = np.real(scipy.fftpack.idst(X,type=1,axis=0))
  return x/(n+1.0)

def get_grads(im):
  """
  return the x and y gradients.
  """
  [H,W] = im.shape
  Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dx[j,k] = im[j,k+1] - im[j,k]
  Dy[j,k] = im[j+1,k] - im[j,k]
  return Dx,Dy

def get_laplacian(Dx,Dy):
  """
  return the laplacian
  """
  [H,W] = Dx.shape
  Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k] 
  Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]
  return Dxx+Dyy

def poisson_solve(gx,gy,bnd):
  # convert to double:
  gx = gx.astype('float32')
  gy = gy.astype('float32')
  bnd = bnd.astype('float32')

  H,W = bnd.shape
  L = get_laplacian(gx,gy)

  # set the interior of the boundary-image to 0:
  bnd[1:-1,1:-1] = 0
  # get the boundary laplacian:
  L_bp = np.zeros_like(L)
  L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \
           + bnd[1:-1,2:] + bnd[1:-1,0:-2] \
           + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x
  L = L - L_bp
  L = L[1:-1,1:-1]

  # compute the 2D DST:
  L_dst = DST(DST(L).T).T #first along columns, then along rows

  # normalize:
  [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))
  D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)
  L_dst = L_dst/D

  img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns

  img = bnd.copy()

  img[1:-1,1:-1] = img_interior

  return img

def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):
  """
  combine images using poission editing.
  IM_TOP and IM_BACK should be of the same size.
  """
  assert np.all(im_top.shape==im_back.shape)

  im_top = im_top.copy().astype('float32')
  im_back = im_back.copy().astype('float32')
  im_res = np.zeros_like(im_top)

  # frac of gradients which come from source:
  for ch in xrange(im_top.shape[2]):
    ims = im_top[:,:,ch]
    imd = im_back[:,:,ch]

    [gxs,gys] = get_grads(ims)
    [gxd,gyd] = get_grads(imd)

    gxs *= scale_grad
    gys *= scale_grad

    gxs_idx = gxs!=0
    gys_idx = gys!=0
    # mix the source and target gradients:
    if mode=='max':
      gx = gxs.copy()
      gxm = (np.abs(gxd))>np.abs(gxs)
      gx[gxm] = gxd[gxm]

      gy = gys.copy()
      gym = np.abs(gyd)>np.abs(gys)
      gy[gym] = gyd[gym]

      # get gradient mixture statistics:
      f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)
      f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)
      if min(f_gx, f_gy) <= 0.35:
        m = 'max'
        if scale_grad > 1:
          m = 'blend'
        return blit_images(im_top, im_back, scale_grad=1.5, mode=m)

    elif mode=='src':
      gx,gy = gxd.copy(), gyd.copy()
      gx[gxs_idx] = gxs[gxs_idx]
      gy[gys_idx] = gys[gys_idx]

    elif mode=='blend': # from recursive call:
      # just do an alpha blend
      gx = gxs+gxd
      gy = gys+gyd

    im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)

  return im_res.astype('uint8')


def contiguous_regions(mask):
  """
  return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
  True and we cover all such regions
  """
  in_region = None
  boundaries = []
  for i, val in enumerate(mask):
    if in_region is None and val:
      in_region = i
    elif in_region is not None and not val:
      boundaries.append((in_region, i))
      in_region = None

  if in_region is not None:
    boundaries.append((in_region, i+1))
  return boundaries


if __name__=='__main__':
  """
  example usage:
  """
  import seaborn as sns

  im_src = cv2.imread('../f01006.jpg').astype('float32')

  im_dst = cv2.imread('../f01006-5.jpg').astype('float32')

  mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)
  # print mu
  sz = (1920,1080)
  im_src = cv2.resize(im_src,sz)
  im_dst = cv2.resize(im_dst,sz)

  im0 = im_dst[:,:,0] > 100
  im_dst[im0,:] = im_src[im0,:]
  im_dst[~im0,:] = 50
  im_dst = cv2.GaussianBlur(im_dst,(5,5),5)

  im_alpha = 0.8*im_dst + 0.2*im_src

  # plt.imshow(im_dst)
  # plt.show()

  im_res = blit_images(im_src,im_dst)

  import scipy
  scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))

  im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]

  # plt.imshow(im_alpha_L)
  # plt.show()
  for i in xrange(500,im_alpha_L.shape[1],5):
    l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]
    l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]
    l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]


    with sns.axes_style("darkgrid"):
      plt.subplot(2,1,2)
      #plt.plot(l_alpha,label='alpha')

      plt.plot(l_poisson,label='poisson')
      plt.hold(True)
      plt.plot(l_actual,label='actual')
      plt.legend()

      # find "text regions":
      is_txt = ~im0[i,:]
      t_loc = contiguous_regions(is_txt)
      ax = plt.gca()
      for b0,b1 in t_loc:
        ax.axvspan(b0, b1, facecolor='red', alpha=0.1)

    with sns.axes_style("white"):
      plt.subplot(2,1,1)
      plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
      plt.hold(True)
      plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')
      plt.axis('image')
      plt.show()


  plt.subplot(1,3,1)
  plt.imshow(im_src[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,2)
  plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,3)  
  plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python查看FTP是否能连接成功的方法
Jul 30 Python
python中requests使用代理proxies方法介绍
Oct 25 Python
django静态文件加载的方法
May 20 Python
Tensorflow中的placeholder和feed_dict的使用
Jul 09 Python
利用pandas读取中文数据集的方法
Jul 25 Python
python代理工具mitmproxy使用指南
Jul 04 Python
利用python在大量数据文件下删除某一行的例子
Aug 21 Python
如何解决tensorflow恢复模型的特定值时出错
Feb 06 Python
Python ATM功能实现代码实例
Mar 19 Python
Python将list元素转存为CSV文件的实现
Nov 16 Python
python3 googletrans超时报错问题及翻译工具优化方案 附源码
Dec 23 Python
python图片灰度化处理的几种方法
Jun 23 Python
python中的decorator的作用详解
Jul 26 #Python
python opencv实现旋转矩形框裁减功能
Jul 25 #Python
Python3匿名函数用法示例
Jul 25 #Python
Python实现动态添加属性和方法操作示例
Jul 25 #Python
利用pandas读取中文数据集的方法
Jul 25 #Python
利用pandas进行大文件计数处理的方法
Jul 25 #Python
使用python验证代理ip是否可用的实现方法
Jul 25 #Python
You might like
杏林同学录(三)
2006/10/09 PHP
PHP通过COM使用ADODB的简单例子
2006/12/31 PHP
Windows下XDebug 手工配置与使用说明
2010/07/11 PHP
php数组函数序列之array_unshift() 在数组开头插入一个或多个元素
2011/11/07 PHP
php根据一个给定范围和步进生成数组的方法
2015/06/19 PHP
CI框架源码解读之URI.php中_fetch_uri_string()函数用法分析
2016/05/18 PHP
破除网页鼠标右键被禁用的绝招大全
2006/12/27 Javascript
Jquery 插件开发笔记整理
2011/01/17 Javascript
浏览器页面区域大小的js获取方法
2013/09/21 Javascript
PHPMyAdmin导入时提示文件大小超出PHP限制的解决方法
2015/03/30 Javascript
jQuery选择器源码解读(四):tokenize方法的Expr.preFilter
2015/03/31 Javascript
详解jQuery中的元素的属性和相关操作
2015/08/14 Javascript
php利用curl获取远程图片实现方法
2015/10/26 Javascript
Web安全测试之XSS实例讲解
2016/08/15 Javascript
js实现HashTable(哈希表)的实例分析
2016/11/21 Javascript
JS中input表单隐藏域及其使用方法
2017/02/13 Javascript
vue.js树形组件之删除双击增加分支实例代码
2017/02/28 Javascript
Vue.js学习笔记之常用模板语法详解
2017/07/25 Javascript
深入理解Promise.all
2018/08/08 Javascript
在vue项目中集成graphql(vue-ApolloClient)
2018/09/08 Javascript
vue中轮训器的使用
2019/01/27 Javascript
vue 父组件通过$refs获取子组件的值和方法详解
2019/11/07 Javascript
vue项目使用$router.go(-1)返回时刷新原来的界面操作
2020/07/26 Javascript
[44:15]DOTA2上海特级锦标赛主赛事日 - 5 败者组决赛Liquid VS EG第二局
2016/03/06 DOTA
跟老齐学Python之从格式化表达式到方法
2014/09/28 Python
Python异常处理知识点总结
2019/02/18 Python
python自动化测试之如何解析excel文件
2019/06/27 Python
Python 画出来六维图
2019/07/26 Python
Python3将jpg转为pdf文件的方法示例
2019/12/13 Python
Django使用list对单个或者多个字段求values值实例
2020/03/31 Python
基于python实现判断字符串是否数字算法
2020/07/10 Python
如何使用Python自动生成报表并以邮件发送
2020/10/15 Python
New Era英国官网:美国棒球帽品牌
2018/03/21 全球购物
高中生毕业学习总结的自我评价
2013/11/14 职场文书
2014年教务处工作总结
2014/12/03 职场文书
幼儿园园务工作总结2015
2015/05/18 职场文书