python库Tsmoothie模块数据平滑化异常点抓取


Posted in Python onJune 10, 2022

前言

在处理数据的时候,我们经常会遇到一些非连续的散点时间序列数据:

python库Tsmoothie模块数据平滑化异常点抓取

有些时候,这样的散点数据是不利于我们进行数据的聚类和预测的。因此我们需要把它们平滑化,如下图所示:

python库Tsmoothie模块数据平滑化异常点抓取

如果我们将散点及其范围区间都去除,平滑后的效果如下:

python库Tsmoothie模块数据平滑化异常点抓取

这样的时序数据是不是看起来舒服多了?此外,使用平滑后的时序数据去做聚类或预测或许有令人惊艳的效果,因为它去除了一些偏差值并细化了数据的分布范围。

如果我们自己开发一个这样的平滑工具,会耗费不少的时间。因为平滑的技术有很多种,你需要一个个地去研究,找到最合适的技术并编写代码,这是一个非常耗时的过程。平滑技术包括但不限于:

  • 指数平滑
  • 具有各种窗口类型(常数、汉宁、汉明、巴特利特、布莱克曼)的卷积平滑
  • 傅立叶变换的频谱平滑
  • 多项式平滑
  • 各种样条平滑(线性、三次、自然三次)
  • 高斯平滑
  • 二进制平滑

所幸,有大佬已经为我们实现好了时间序列的这些平滑技术,并在GitHub上开源了这份模块的代码——它就是 Tsmoothie 模块。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点。

请选择以下任一种方式输入命令安装依赖:

  • Windows 环境 打开 Cmd (开始-运行-CMD)。
  • MacOS 环境 打开 Terminal (command+空格输入Terminal)。
  • 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.
pip install tsmoothie

(PS) Tsmoothie 仅支持Python 3.6 及以上的版本。

2.Tsmoothie 基本使用

为了尝试Tsmoothie的效果,我们需要生成随机数据:

import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.utils_func import sim_randomwalk
from tsmoothie.smoother import LowessSmoother
# 生成 3 个长度为200的随机数据组
np.random.seed(123)
data = sim_randomwalk(n_series=3, timesteps=200,
                      process_noise=10, measure_noise=30)

然后使用Tsmoothie执行平滑化:

# 平滑
smoother = LowessSmoother(smooth_fraction=0.1, iterations=1)
smoother.smooth(data)

通过 smoother.smooth_data 你就可以获取平滑后的数据:

print(smoother.smooth_data)
# [[ 5.21462928 3.07898076 0.93933646 -1.19847767 -3.32294934
# -5.40678762 -7.42425709 -9.36150892 -11.23591897 -13.05271523
# ....... ....... ....... ....... ....... ]]

绘制效果图:

python库Tsmoothie模块数据平滑化异常点抓取

3.基于Tsmoothie的极端异常值检测

事实上,基于smoother生成的范围区域,我们可以进行异常值的检测:

python库Tsmoothie模块数据平滑化异常点抓取

可以看到,在蓝色范围以外的点,都属于异常值。我们可以轻易地将这些异常值标红或记录,以便后续的处理。

_low, _up = smoother.get_intervals('sigma_interval', n_sigma=2)
series['low'] = np.hstack([series['low'], _low[:,[-1]]])
series['up'] = np.hstack([series['up'], _up[:,[-1]]])
is_anomaly = np.logical_or(
    series['original'][:,-1] > series['up'][:,-1],
    series['original'][:,-1] < series['low'][:,-1]
).reshape(-1,1)

假设蓝色范围interval的最大值为up、最小值为low,如果存在 data > up 或 data < low 则表明此数据是异常点。

使用以下代码通过滚动数据点进行平滑化和异常检测,就能保存得到上方的GIF动图。

上滑查看更多代码

# Origin: https://github.com/cerlymarco/MEDIUM_NoteBook/blob/master/Anomaly_Detection_RealTime/Anomaly_Detection_RealTime.ipynb
import numpy as np
import matplotlib.pyplot as plt
from celluloid import Camera
from collections import defaultdict
from functools import partial
from tqdm import tqdm
from tsmoothie.utils_func import sim_randomwalk, sim_seasonal_data
from tsmoothie.smoother import *
def plot_history(ax, i, is_anomaly, window_len, color='blue', **pltargs):
    posrange = np.arange(0,i)
    ax.fill_between(posrange[window_len:],
                    pltargs['low'][1:], pltargs['up'][1:],
                    color=color, alpha=0.2)
    if is_anomaly:
        ax.scatter(i-1, pltargs['original'][-1], c='red')
    else:
        ax.scatter(i-1, pltargs['original'][-1], c='black')
    ax.scatter(i-1, pltargs['smooth'][-1], c=color)
    ax.plot(posrange, pltargs['original'][1:], '.k')
    ax.plot(posrange[window_len:],
            pltargs['smooth'][1:], color=color, linewidth=3)
    if 'ano_id' in pltargs.keys():
        if pltargs['ano_id'].sum()>0:
            not_zeros = pltargs['ano_id'][pltargs['ano_id']!=0] -1
            ax.scatter(not_zeros, pltargs['original'][1:][not_zeros],
                       c='red', alpha=1.)
np.random.seed(42)
n_series, timesteps = 3, 200
data = sim_randomwalk(n_series=n_series, timesteps=timesteps,
                      process_noise=10, measure_noise=30)
window_len = 20
fig = plt.figure(figsize=(18,10))
camera = Camera(fig)
axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)]
series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32'))
for i in tqdm(range(timesteps+1), total=(timesteps+1)):
    if i>window_len:
        smoother = ConvolutionSmoother(window_len=window_len, window_type='ones')
        smoother.smooth(series['original'][:,-window_len:])
        series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]])
        _low, _up = smoother.get_intervals('sigma_interval', n_sigma=2)
        series['low'] = np.hstack([series['low'], _low[:,[-1]]])
        series['up'] = np.hstack([series['up'], _up[:,[-1]]])
        is_anomaly = np.logical_or(
            series['original'][:,-1] > series['up'][:,-1],
            series['original'][:,-1] < series['low'][:,-1]
        ).reshape(-1,1)
        if is_anomaly.any():
            series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int)
        for s in range(n_series):
            pltargs = {k:v[s,:] for k,v in series.items()}
            plot_history(axes[s], i, is_anomaly[s], window_len,
                         **pltargs)
        camera.snap()
    if i>=timesteps:
        continue
    series['original'] = np.hstack([series['original'], data[:,[i]]])
print('CREATING GIF...') # it may take a few seconds
camera._photos = [camera._photos[-1]] + camera._photos
animation = camera.animate()
animation.save('animation1.gif', codec="gif", writer='imagemagick')
plt.close(fig)
print('DONE')

注意,异常点并非都是负面作用,在不同的应用场景下,它们可能代表了不同的意义。

python库Tsmoothie模块数据平滑化异常点抓取

比如在股票中,它或许可以代表着震荡行情中某种趋势反转的信号。

或者在家庭用电量分析中,它可能代表着某个时刻的用电峰值,根据这个峰值我们可以此时此刻开启了什么样的电器。

所以异常点的作用需要根据不同应用场景进行不同的分析,才能找到它真正的价值。

python库Tsmoothie模块数据平滑化异常点抓取

总而言之,Tsmoothie 不仅可以使用多种平滑技术平滑化我们的时序数据,让我们的模型训练更加有效,还可以根据平滑结果找出数据中的离群点,是我们做数据分析和研究的一个好帮手,非常有价值。

以上就是python库Tsmoothie模块数据平滑化异常点抓取的详细内容,更多关于python Tsmoothie异常点抓取的资料请关注三水点靠木其它相关文章!


Tags in this post...

Python 相关文章推荐
python 不关闭控制台的实现方法
Oct 23 Python
Python functools模块学习总结
May 09 Python
Python写入CSV文件的方法
Jul 08 Python
Python随机生成数据后插入到PostgreSQL
Jul 28 Python
python编程羊车门问题代码示例
Oct 25 Python
python实现list由于numpy array的转换
Apr 04 Python
pandas中的DataFrame按指定顺序输出所有列的方法
Apr 10 Python
使用pycharm生成代码模板的实例
May 23 Python
Django框架模板介绍
Jan 15 Python
python word转pdf代码实例
Aug 16 Python
python实现银行管理系统
Oct 25 Python
numpy实现神经网络反向传播算法的步骤
Dec 24 Python
使用Django框架创建项目
Jun 10 #Python
Python实现信息管理系统
Jun 05 #Python
python实现学员管理系统(面向对象版)
Jun 05 #Python
python实现学生信息管理系统(面向对象)
Jun 05 #Python
Python使用pyecharts控件绘制图表
Jun 05 #Python
Python使用openpyxl模块处理Excel文件
Jun 05 #Python
Python中requests库的用法详解
Jun 05 #Python
You might like
非常重要的php正则表达式详解
2016/01/04 PHP
PHP微信开发之查询城市天气
2016/06/23 PHP
Yii框架弹出框功能示例
2017/01/07 PHP
PHP7 字符串处理机制修改
2021/03/09 PHP
获取Javscript执行函数名称的方法
2006/12/22 Javascript
extjs中grid中嵌入动态combobox的应用
2011/01/01 Javascript
关于Javascript与iframe的那些事儿
2013/07/04 Javascript
浅谈JavaScript Date日期和时间对象
2014/12/29 Javascript
jQuery团购倒计时特效实现方法
2015/05/07 Javascript
JavaScript中getUTCMinutes()方法的使用详解
2015/06/10 Javascript
nodejs个人博客开发第七步 后台登陆
2017/04/12 NodeJs
vue组件发布到npm简单步骤
2017/11/30 Javascript
关于echarts在节点显示动态数据及添加提示文本所遇到的问题
2018/04/20 Javascript
webpack+vue-cil中proxyTable处理跨域的方法
2018/07/20 Javascript
JavaScript引用类型Array实例分析
2018/07/24 Javascript
微信JS-SDK updateAppMessageShareData安卓不能自定义分享详解
2019/03/29 Javascript
爬山算法简介和Python实现实例
2014/04/26 Python
Python Sqlite3以字典形式返回查询结果的实现方法
2016/10/03 Python
python实现从本地摄像头和网络摄像头截取图片功能
2019/07/11 Python
Python3 itchat实现微信定时发送群消息的实例代码
2019/07/12 Python
python对Excel按条件进行内容补充(推荐)
2019/11/24 Python
Python time库基本使用方法分析
2019/12/13 Python
判断Threading.start新线程是否执行完毕的实例
2020/05/02 Python
使用python matploblib库绘制准确率,损失率折线图
2020/06/16 Python
Django如何在不停机的情况下创建索引
2020/08/02 Python
CSS3属性使网站设计增强同时不消弱可用性
2009/08/29 HTML / CSS
Html5 Canvas实现图片标记、缩放、移动和保存历史状态功能 (附转换公式)
2020/03/18 HTML / CSS
Clarks英国官方网站:全球领军鞋履品牌
2016/11/26 全球购物
strlen的几种不同实现方法
2013/05/31 面试题
幼儿教师师德演讲稿
2014/05/06 职场文书
小学生推普周国旗下讲话稿
2014/09/21 职场文书
2014年行政人事工作总结
2014/12/09 职场文书
高一军训决心书
2015/02/05 职场文书
员工工作表扬信
2015/05/05 职场文书
大学生读书笔记范文
2015/07/01 职场文书
MATLAB 全景图切割及盒图显示的实现步骤
2021/05/14 Python